آگوست فردیناند موبیوس (August Ferdinand Möbius) در روز ۱۷ نوامبر ۱۷۹٠ در شهر زاکسن به دنیا آمد. وی ریاضیدان و ستاره شناس مشهور آلمانی است. بیشتر شهرت او به دلیل کشف نوار موبیوس است. نوار موبیوس نواری است که دو لبه آن بر هم قرار گرفته و حلقهای را به وجود میآورد؛ البته باید یک لبه انتهایی قبل از اتصال به لبه دیگر نیم دور چرخانده شود. این نوار را دو ریاضیدان آلمانی به نامهای آگوست فردیناند موبیوس و جان بندیکت (Johann Benedict) در سال ۱۸۵۸ به طور مستقل و جداگانه کشف کردند و به ثبت رساندند.
ابتداییترین راه برای ایجاد این نوار، انتخاب یک نوار مستطیل شکل و نرمی است که آن را یک بار میپیچانیم و سپس دو انتهای آن را به هم متصل میکنیم. سطحی که به این ترتیب به دست میآید «نوار موبیوس» نامیده میشود.
این سطح تنها یک رو دارد. به بیان دیگر، یک صفحه کاغذی را میتوان با دو رنگ گوناگون در دو طرف آن رنگ کرد اما نوار موبیوس را با این روش نمیتوان با دو رنگ مختلف رنگ کرد. در صورت اقدام به چنین کاری به همان جایی که رنگ کردن را در ابتدا آغاز کرده بودیم، میرسیم؛ در حالی که در طرف دیگر نوار هستیم! پس نوار موبیوس، سطحی است که یک رو دارد و حرکت ما روی آن تا بینهایت بار تکرار می شود.
دلیل «یک رویه بودن» این نوار آن است که در هر نقطه a از نوار موبیوس میتوان دو بردار با جهتهای مختلف رسم کرد که بر نوار موبیوس در این نقطه عمود باشد. این بردارها را قائمهای نوار موبیوس در نقطه a مینامیم. یکی از این بردارها را انتخاب و نقطه a را به تدریج روی نوار موبیوس جابجا میکنیم. در این صورت بردار ما هم همراه با نقطه a جابجا میشود. بنابراین، روی نوار موبیوس چنان مسیر بستهای وجود دارد که اگر قائمی این مسیر را روی سطح بپیماید، به جای این که به وضع نخستین خود برسد، روی برداری که در جهت مخالف وضع نخستین آن است قرار میگیرد.
مرزِ یک ناحیه، خط جدا کننده آن ناحیه از ناحیه دیگر است. در ریاضیات برای یک سطح سه مفهوم تعریف می شود:
۱- نقطه داخلی: نقطه ای که بتوان آن را داخل یک دایره روی سطح محصور کرد.
۲- نقطه خارجی: نقطه ای است که بتوانیم دایره ای حول آن رسم کنیم که متعلق به آن سطح نباشد.
۳- نقطه مرزی: نقطه ای است که هر دایره ای حول آن رسم شود، قسمتی از آن متعلق به سطح و قسمت دیگر آن متعلق به خارج آن سطح باشد.
با این تعریف نوار موبیوس فقط یک مرز دارد. یعنی با یک بار حرکت در کرانههای انتهای نوار تمام مرز آن را می توانیم طی کنیم.
اگر با یک خودکار بر روی نوار موبیوس خطی در طول نوار بکشیم و ادامه دهیم این خط دوباره به نقطه شروع باز میگردد و هر دو طرف نوار خط کشیده میشود! در واقع، نوار موبیوس مثالی از یک رویه بدون جهت (جهت ناپذیر) است. یعنی نوار موبیوس سطحی است که یک رو دارد. نوار موبیوس خواص غیرمنتظره دیگری نیز دارد؛ برای نمونه، هرگاه بخواهیم این نوار را در امتداد طولش بِـبُریم به جای این که دو نوار به دست بیاوریم، یک نوار بلندتر و با دو چرخش به دست می آوریم! همچنین با تکرار دوباره این کار دو نوار موبیوس در هم پیچ خورده به دست میآید. با ادامه این کار یعنی بریدن پیاپی نوار، در انتهای کار تصاویر غیرمنتظرهای ایجاد میشود که به حلقههای پارادرومیک (paradromic rings) موسومند. همچنین اگر این نوار را از یک سوم عرض نوار ببریم، دو نوارِ موبیوس در هم گره شده با طولهای متفاوت به دست خواهیم آورد. تمامی این کارها به آسانی قابل اجراء هستند.
خاصیت موبیوسی: خاصیتی است که رابطه بین «درون» و «بیرون» را وارونه میکند. یعنی هر نقطه از یک سطح موبیوسی در عین حال که درون است، بیرون نیز میباشد! بنابراین در یک تغییر پیوسته، نوعی دگرگونی در ماهیت یک فضا صورت میگیرد. در واقع در این حالت فضا خاصیت دو گانه اما پیوسته پیدا میکند. خاصیت موبیوس که گذر از درون به برون و از برون به درون را ممکن میکند، کمابیش توانسته است بر فراز شکاف حاصل از دوگانگی (ثنویت) پلی بزند (شایگان،۱۳۸٠). بنابراین، فضای ِمیان «برون و درون»، «پیوستگی» و «تکرار» با یک تعریف ریاضی به یک سطح هندسی تبدیل میشود. سطحی که بر آن در هر لحظه ای هم داخل و هم خارج فضا هستیم. این ویژگی در طراحی معماری مورد توجه قرار گرفته است
این کتاب، اولین کتابی است که به عنوان اولین درس در زمینهی فضاهای متریک میتواند مورد مطالعه قرار گیرد. این کتاب در عین حال که با دیدگاهی توپولوژیکی به مبحث فضاهای متریک مینگرد با زبانی ساده به شرح مفاهیم مورد بحث در اینگونه فضاها میپردازد. از اینرو کتاب، حتی برای دانشجویی که تنها با ریاضیات عمومی آشناست به راحتی قابل درک است و شاید بتوان آن را مبانی آنالیز نامید. روش بیان مطالب مطرح شده در کتاب و طرز ارائهی مفاهیم و قضایا به گونهای است که دانشجو را با مباحث رودرو میسازد. و همانند آموزش شفاهی با دانشجو به سوال و جواب میپردازد. این شیوه باعث میشود این کتاب به عنوان منبعی خود آموز مورد استفاده متعلم قرار گیرد. از طرف دیگر گرچه در برهانها جزئیترین مطالب نیز مورد توجه قرار گرفته است، با این حال هدف اصلی کتاب که در حقیقت ایجاد زمینهی مناسب برای آشنای با توپولوژی است در سرتاسر کتاب حفظ شده است. لذا فضاهای متریک(ب اطعم توپولوژی ) را میتوان از طرفی درسی پیشرفته درفضاهای متریک و از طرفی دیگر درسی مقدماتی در توپولوژی دانست.
مجید میرزا وزیری، نویسندهی کتاب، که از اعضای هیئت علمی دانشگاه فردوسی مشهد است در تالیف کتاب سعی داشته تا با ارائهی مثالهایی روشن، چه در خلال درس و چه در بخشی مجزا از هر فصل، در انتقال مفاهیم تخصصی این شاخه از ریاضیات و ایجاد انگیزه در دانشجویان، گامی مؤثر در راستای آشناسازی علاقه مندان با این زمینهی محض و در عین حال کاربردی از ریاضیات بردارد.